

Research Motivation

- Coronavirus 2019 (COVID-19) is an infectious disease spreading globally.
- Computed tomography (CT) is preferred COVID-19 diagnosis imaging option. Because of the consequent depletion of hospital resources, the use of efficient
- computer-aided medical diagnosis has become more critical.
- Artificial intelligence (AI) powered COVID-19 detection can facilitate an early diagnosis and further reduce the infectivity and mortality rates.
- Images are extracted from 760 medRxiv and bioRxiv papers.
- Images containing clinical findings of COVD-19 based on their captions are manually selected.
- **Dataset Challenges**
 - Degraded quality
 - Some lesions are market
- High variability (size, intensity, etc.)

Dataset

Research Gap

- Deep learning has enabled breakthrough in a variety of computer vision tasks.
- Exhibit comparable performance with radiologist (Maghdid et al. 2020)
- Limitations of deep learning are the reliability concerns about the generalizability to all cases and the blackbox nature, hindering interpretability.

Research gap is to improve generalizability and interpretability of deep learning.

Contributions

- We propose a **robust ensemble deep learning model** for Covid-19 Diagnosis on Lung CT Scan Images.
- The two base-learners, Residual Attention92 and Densenet121 networks, are chosen as they consolidate each other by focusing on complementary features.
- We compared different **meta-learner**s and found **SVM with radial basis function kernel** to give the best performance.
- Our experimental results demonstrate our proposed method's robustness with an average 4% accuracy improvement over each individual base-learner.
- Our code and results are available open source on Github: https://github.com/maftouni/Corona_CT_Classification.git

A Robust Ensemble-Learning Model for Covid-19 Diagnosis on CT Images

Maede Maftouni, Andrew Chung Chee Law, Bo Shen, Yangze Zhou, Zhenyu (James) Kong **Smart Manufacturing Analytics Research & Technology (SMART) Laboratory Grado Department of Industrial and Systems Engineering, Virginia Tech**

PI Contact Information: Dr. Zhenyu (James) Kong, email: zkong@vt.edu, phone: 540-231-9762

