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Research Motivation

e Coronavirus 2019 (COVID-19) is an infectious disease spreading globally.

 Computed tomography (CT) is preferred COVID-19 diagnosis imaging option.

 Because of the consequent depletion of hospital resources, the use of efficient
computer-aided medical diagnosis has become more critical.

* Artificial intelligence (Al) powered COVID-19 detection can facilitate an early
diagnosis and further reduce the infectivity and mortality rates.

* Images are extracted from 760
medRxiv and bioRxiv papers.

* Images containing clinical findings
of COVD-19 based on their
captions are manually selected.

 Dataset Challenges

- Degraded quality
- Some lesions are market

- High variability (size, intensity, etc.)

 Deep learning has enabled breakthrough in a variety of computer vision tasks.

Dataset

Research Gap

Chest Computed tomography (CT) images of patients
infected with 2019-nCoV on admission to hospital. A,
Chest CT scan obtained on February 2, 2020, from a
39-year-old man, showing bilateral ground glass
opacities. B, Chest CT scan obtained on February 6,
2020, from a 45-year-old man, showing bilateral
ground glass opacities. C, Chest CT scan taken on
January 27, 2020, from a 48-year-old man (discharged

Chest CT scan taken on January 23, 2020, from a 34-
year-old man (discharged after treatment on day 11),
showing patchy shadows.

* Exhibit comparable performance with radiologist (Maghdid et al. 2020)

* Limitations of deep learning are the reliability concerns about the

generalizability to all cases and the blackbox nature, hindering interpretability.

Research gap is to improve generalizability and interpretability of deep learning.

Contributions

* We propose a robust ensemble deep learning model for Covid-19 Diagnosis

on Lung CT Scan Images.

* The two base-learners, Residual Attention92 and Densenet121 networks, are
chosen as they consolidate each other by focusing on complementary features.

* We compared different meta-learners and found SVM with radial basis
function kernel to give the best performance.
 QOur experimental results demonstrate our proposed method's robustness

with an average 4% accuracy improvement over each individual base-learner.

 QOur code and results are available open source on Github:
https://github.com/maftouni/Corona_CT Classification.git

after treatment on day 9), showing patchy shadows. D,
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Proposed Methodology

 The two base-learners are fine-tuned on CT images. The features extracted from base-
learners are stacked together and processed by a meta learner for the final prediction.
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Residual Attention 92

Utilizes mixed attention to capture different types of attention for feature learning.
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Data Preprocessing & Model Training

* Used 6-fold cross-validation, giving 452 training and 91 validation images.

 Used Bayesian Optimization to tune the hyperparameter of the model.

 Applied the following transformations and augmentations on training and only
transformations on validation set:

Types

Resize

Random Rotation *

Random Resized Crop *

Random Horizontal Flip *

Normalize Each Channel

Parameters

Training: [ 256 , 256 ]
Validation: [ 224 | 224 ]

Scale = (0.5, 1)
Size = 224
Probability = 0.5

max left rotation=10
max right rotation=10

Mean = [0.485, 0.456, 0.400],
Standard Deviation = [0.229, 0.224, 0.225]
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Experimental Results

Structure Training Accuracy Training F1 score Cross-Validation Accuracy
DenseNet121 94.12% 93.49% 90.81%
Residual Attention 94.50% 94.99% 91.34%
Proposed Method 98.89% 98.79% 95.68%
Training Loss Training Accuracy
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Visualization: Grad-cam Activation Maps
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The more epochs we run,
the more focus is given to
covid-19 manifestations.
This focus is more evident in
the second base-learner as
it uses attention modules.
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Covid-19

Base-learners focus on 5

complementary, attention- g

aware, and global features. S
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